Conduction with thermal
energy generation

The Plane Wall
&
The Solid Cylinder



Heat Diffusion Equation- Other forms

f k=constant
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« [For steady state conditions
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« [For steady state conditions, one-dimensional transfer in x-direction
and no energy generation
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(a)

FFIGURE 3.9
boundary conditions. (b) Symmetrical boundary conditions. (¢) Adiabatic surface at midplane.
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Conduction in a plane wall with uniform heat generation. (a¢) Asymmetrical



Consider the plane wall of Figure 3.9a, in which there is uniform energy generation
per unit volume (g is constant) and the surfaces are maintained at 7, and T,.
For constant thermal conductivity k, the appropriate form of the heat equation,

Equation 2.20, is g P
g
ek (3.39)
Fig 3.
The general solution is T T T Ts‘zlg 3.9a
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where C, and C, are the constants of integration. For the prescribed boundary
conditions,

(-L)y=T,, ad TL)=T,,
The constants may be evaluated and are of the form

Ts,2 > Ts.l q Ts,l =1 Ts,2
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in which case the temperature distribution 18
gL’ ( xz) Ta=tyy  Li+T1;
=3

; -L- + 5 (3.41)
The heat flux at any point in the wall may, of course, be determined by using
Equation 3.41 with Fourier’s law. Note, however, that with generation the heat flux
is no longer independent of x.
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Eqg. 3.41 becomes 2k L
The maximum temperature exists at the midplane
'L)
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surface at x = L for the symmetrical plane wall (Figure 3.9b) or the insulated plan
wall (Figure 3.9¢). Neglecting radiation and substituting the aooronrgaxte rate equi-

tions, the energy balance given by Equation 1.12 reduces to

dT
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Substituting from Equation 3.42 to obtain the temperature gradie atx =L, it fol
lows that

L
T,=T,+&
| h

Hence T, may be computed from knowledge of 7., ¢, L, and h.
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Figure 3.10

Conduction in a solid eylinder with uniform heat

generation.



Heat Diffusion Equation

* In cylindrical coordinates:
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* In spherical coordinates:
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To determine the temperature distribution in the cylinder, we begin with
the appropriate form of the heat equation. For constant thermal conductivity k,
Equation 2.24 reduces to

d (,41_") + .Z_ =0 (3.49)

Separating variables and assuming uniform generation, this expression may be
integrated to obtain

r%: —% r2 + C' (3'50)

Repeating the procedure, the general solution for the temperature distribution
becomes

T(r) = —43,2 r:+ C/Inr+ G, (3.51)

To obtain the constants of integration C, and C,, we apply the boundary conditions
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=0 and Tr) =T,




.- atr=0and Equation 3.50, it is evident that C, = 0. Using the surface bound-
ary condition at r = r, with Equation 3.51, we then obtain

sr 4l
G =T+ VAL (3.52)
The temperature distribution is therefore
gr, r
1(r) = H r—(z) L 2 & (3.53)

Evaluating Equation 3.53 at the centerline and dividing the result into Equation 3.53,
we obtain the temperature distribution in nondimensional form,

T(r) e Ts e TR (% 2
e (7) (3.54)
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To relate the surface temperature, T, o the temperature of the cold fluid, T,
either a surface energy balance or an overall energy balance may be used. Choosing

the second approach, we obtain
mr,L) = h(ar L(T, = To)

or

T,=Tm+%;3 359



Insulation
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